

Comprehensive Functional Enrichment Analysis of Ovarian Cancer-Associated Genes Derived from GWAS Data

Hemanth kumar V.M.^{1*}, Govardhan T.¹, Lalithasree K.¹, Adiga Usha² and Jyoti B.¹

1. Department of Pathology, Apollo Institute of Medical Sciences and Research Chittoor, INDIA

2. Department of Biochemistry, Apollo Institute of Medical Sciences and Research Chittoor, INDIA

*hkvm11@gmail.com

Abstract

Genome-wide association studies (GWAS) have identified multiple risk loci associated with ovarian cancer. This study integrates GWAS data with bioinformatics analyses to uncover key genetic loci, biological pathways and molecular interactions implicated in ovarian cancer. GWAS data from publicly available repositories were analyzed to identify significant risk loci. Gene Ontology (GO) enrichment, Reactome pathway mapping and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Protein-protein interaction (PPI) network construction and microRNA (miRNA) target analysis provided insights into post-transcriptional regulation. Additionally, metabolomic and transcription factor analyses were conducted to explore systemic alterations associated with ovarian cancer.

Significant associations were identified with genes involved in DNA damage repair (*ANKLE1*, *BABAM1*), immune modulation (*USHB1*) and chromosomal stability. PPI analysis revealed key regulatory hub proteins, including *HGS* and *SUMO1*. miRNA enrichment analysis highlighted regulatory interactions, particularly with *hsa-miR-614* and *hsa-miR-652*, suggesting potential epigenetic influences on gene expression. Reactome pathway analysis identified critical involvement in DNA double-strand break repair and non-homologous end-joining (NHEJ) pathways. This study provides novel insights into the genetic and molecular landscape of ovarian cancer, reinforcing the significance of DNA repair pathways, immune system modulation and epigenetic regulation. These findings may aid in identifying therapeutic targets and developing precision medicine approaches for ovarian cancer management.

Keywords: Ovarian cancer, GWAS, Functional enrichment, DNA repair, miRNA analysis.

Introduction

Ovarian cancer is one of the most lethal gynaecological malignancies, accounting for a significant proportion of cancer-related mortality among women worldwide.⁶ Despite

advances in cancer treatment, the prognosis for ovarian cancer remains poor, primarily due to late-stage diagnosis and the high rate of disease recurrence.⁴ The heterogeneity of ovarian cancer, both in terms of histological subtypes and molecular profiles, adds to the complexity of understanding and managing this disease.¹⁶

Genome-wide association studies (GWAS) have revolutionized cancer genetics by identifying key genetic loci associated with disease susceptibility.¹¹ These studies provide valuable insights into the genetic factors contributing to ovarian cancer risk, allowing researchers to investigate specific molecular mechanisms underlying tumor development and progression.²¹ In particular, GWAS has identified multiple susceptibility loci for ovarian cancer including regions such as 9p22.2 and 19p13.11, which harbour genes implicated in DNA repair, immune modulation and chromosomal stability.^{9,23}

Among the most well-established genetic factors associated with ovarian cancer are mutations in the *BRCA1* and *BRCA2* genes.¹⁰ These genes play a critical role in maintaining genomic integrity through homologous recombination repair (HRR), a key pathway for repairing DNA double-strand breaks.⁷ Inherited mutations in *BRCA1/2* confer a significantly increased lifetime risk of ovarian cancer, with *BRCA1* mutation carriers facing up to a 44% risk by age 70.²⁰ However, beyond *BRCA1/2*, GWAS has uncovered additional risk loci that contribute to ovarian cancer susceptibility, emphasizing the polygenic nature of the disease.²⁴

The 19p13.11 region has emerged as a critical susceptibility locus for ovarian cancer with genes such as *ANKLE1*, *BABAM1* and *USHB1* implicated in disease risk.¹³ *ANKLE1* encodes an endonuclease involved in DNA damage response while *BABAM1* functions as a regulatory component of the *BRCA1-A* complex, which facilitates DNA repair.¹⁵ *MERIT40*, also located in this region, has been shown to interact with *BRCA1*, further underscoring the role of DNA repair in ovarian cancer pathogenesis.²⁵ Functional studies have demonstrated that loss of these genes leads to genomic instability, a hallmark of cancer development.⁸

MicroRNAs (miRNAs) have also been recognized as key regulators of gene expression in ovarian cancer. miRNA profiling studies have identified several miRNAs that target ovarian cancer-associated genes, influencing cellular

processes such as proliferation, apoptosis and metastasis.¹ GWAS-based bioinformatics analyses have linked specific miRNAs including hsa-miR-614 and hsa-miR-652, to ovarian cancer risk loci, suggesting potential epigenetic regulation of tumor suppressor and oncogenic pathways.²² The role of miRNAs in post-transcriptional regulation further highlights the intricate network of molecular interactions contributing to ovarian cancer progression.¹⁸

Ovarian cancer remains a major clinical challenge due to its heterogeneous nature and complex genetic underpinnings. GWAS has provided valuable insights into the genetic architecture of ovarian cancer, identifying risk loci and functional pathways associated with disease susceptibility. The integration of genomic, transcriptomic and proteomic data has enhanced our understanding of ovarian cancer pathogenesis, offering new opportunities for precision medicine. Further research is needed to translate these findings into clinically actionable strategies, ultimately improving early detection, prognosis and treatment of ovarian cancer.

Objectives

1. To analyse GWAS-identified genetic variants associated with ovarian cancer and to determine their functional significance.
2. To perform gene ontology (GO) enrichment analysis to classify genes based on biological processes, molecular functions and cellular components relevant to ovarian cancer.
3. To investigate key pathways implicated in ovarian cancer using Reactome and KEGG databases, with a focus on DNA repair mechanisms and immune regulation.
4. To explore post-transcriptional regulation through miRNA enrichment analysis and construct protein-protein interaction (PPI) networks to identify key regulatory proteins in ovarian cancer.

Material and Methods

A multi-step bioinformatics approach was employed to analyse GWAS data¹⁹ and to investigate the functional significance of ovarian cancer-associated genetic variants. First, GWAS data from publicly available repositories were curated, filtering for significant loci associated with ovarian cancer risk. The mapped genes were then subjected to functional enrichment analysis using gene ontology (GO), Reactome pathway mapping and KEGG pathway analysis. Gene ontology (GO) classification provided insights into the biological processes, molecular functions and cellular components enriched among ovarian cancer-associated genes. This step allowed us to categorize genes based on their involvement in critical cellular pathways such as DNA repair, immune regulation and chromosomal stability.

To further investigate disease mechanisms, Reactome and KEGG pathway analyses were performed. These databases helped to identify significant biological pathways associated with ovarian cancer including DNA double-strand break

repair, non-homologous end-joining (NHEJ) and homologous recombination repair. Post-transcriptional regulatory mechanisms were explored through microRNA (miRNA) enrichment analysis using miRTarBase and TargetScan databases. This analysis identified key miRNAs targeting ovarian cancer-associated genes, providing insights into gene expression modulation.

Protein-protein interaction (PPI) networks were constructed using the STRING database to identify hub proteins and key regulatory nodes. These findings highlighted critical protein interactions involved in ovarian cancer pathogenesis, with particular emphasis on DNA repair regulators and immune modulators. Finally, metabolomic and transcription factor analyses were conducted to explore systemic alterations associated with ovarian cancer. Metabolomic profiling helped to identify potential biomarkers linked to ovarian cancer progression, while transcription factor analysis provided insights into gene regulatory networks.

By integrating GWAS findings with multi-omics analyses, this study aims to provide a comprehensive understanding of ovarian cancer susceptibility and to highlight potential therapeutic targets.

Results

GWAS Analysis of Ovarian Cancer Risk Loci (Table 1): The genome-wide association study (GWAS) identified significant loci associated with ovarian cancer susceptibility, particularly on chromosome 19p13.11. This region harbours genes such as C19orf62, MERIT40, BABAM1, USHBP1 and ANKLE1, which have been previously implicated in DNA repair and immune response mechanisms. The presence of ANKLE1 in this region is particularly noteworthy, as it encodes a DNA endonuclease involved in genomic stability. BABAM1, a component of the BRCA1-associated protein complex, plays a crucial role in DNA double-strand break repair, reinforcing the role of DNA damage response pathways in ovarian cancer pathogenesis.

Additionally, USHBP1, a gene involved in protein interactions within cellular signalling, may contribute to immune system regulation in the tumor microenvironment. These findings suggest that ovarian cancer risk is influenced by both genomic stability and immune modulation, aligning with previous studies that emphasize the role of DNA repair deficiency in hereditary ovarian cancer.

MicroRNA Target Prediction (Table 2 and Table 3): The TargetScan and miRTarBase analyses identified several microRNAs (miRNAs) that may regulate genes associated with ovarian cancer. Among the top-ranked miRNAs, hsa-miR-614, hsa-miR-652 and hsa-miR-1306 were found to have high odds ratios, suggesting their strong regulatory influence on gene expression. These miRNAs have been previously linked to cancer progression, particularly through mechanisms that influence epithelial-to-mesenchymal transition (EMT), cell proliferation and apoptosis.

Further validation through miRTarBase revealed a set of miRNAs with exceptionally high combined scores including hsa-miR-7848-3p, hsa-miR-6762-3p and hsa-miR-6829-5p, which exhibited significant interaction with ovarian cancer-associated genes. Notably, hsa-miR-185-3p, which was also identified, has been previously linked to chemoresistance in ovarian cancer by targeting genes involved in drug metabolism and apoptosis. These results indicate that miRNA-mediated regulation plays a critical role in ovarian cancer development, emphasizing the need for further experimental validation to determine the functional consequences of these interactions.

Reactome Pathway Analysis (Table 4): Pathway analysis using Reactome 2024 highlighted significant enrichment in DNA damage response and repair mechanisms, particularly metalloprotease DUBs, non-homologous end-joining

(NHEJ) and DNA double-strand break repair. The most significant pathway, metalloprotease DUBs, suggests that deubiquitination mechanisms play a key role in ovarian cancer progression, possibly through the regulation of protein turnover in DNA repair pathways. The identification of the NHEJ pathway further reinforces the role of genomic instability in ovarian cancer, as NHEJ is a major mechanism for repairing DNA double-strand breaks in cells deficient in homologous recombination (HR).

This finding aligns with previous reports that ovarian cancer patients with BRCA1/BRCA2 mutations often rely on alternative DNA repair pathways, such as NHEJ, leading to increased mutational burden. Additionally, enrichment in G2/M DNA damage checkpoint pathways indicates that ovarian cancer cells may undergo cell cycle dysregulation, contributing to unchecked proliferation.

Table 1
GWAS Analysis of Ovarian Cancer¹⁹

Region	CHR_ID	CHR_POS	Reported Gene (S)	Mapped Gene
19p13.11	19	17278895	C19orf62, MERIT40	BABAM1, USHBP1
19p13.11	19	17283315	ANKLE1	ANKLE1

Table 2
TargetScan microRNA 2017

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	hsa-miR-614	0.05578	0.2675	25.95	74.90
2	hsa-miR-652	0.05780	0.2675	25.01	71.29
3	hsa-miR-1306	0.05852	0.2675	24.69	70.06
4	mmu-miR-675-5p	0.06140	0.2675	23.48	65.51
5	mmu-miR-1946b	0.08337	0.2675	17.01	42.26
6	hsa-miR-1295	0.1212	0.2675	11.37	24.00
7	hsa-miR-4743	0.1379	0.2675	9.87	19.56
8	hsa-miR-662	0.1398	0.2675	9.72	19.13
9	hsa-miR-720	0.1429	0.2675	9.49	18.46
10	mmu-miR-3963	0.1443	0.2675	9.39	18.18

Table 3
miRTarBase 2017

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	hsa-miR-7848-3p	0.004493	0.05570	344.28	1860.86
2	hsa-miR-6762-3p	0.007332	0.05570	207.80	1021.44
3	hsa-miR-6829-5p	0.01121	0.05570	134.61	604.57
4	hsa-miR-6846-5p	0.01507	0.05570	99.48	417.32
5	hsa-miR-6848-5p	0.01507	0.05570	99.48	417.32
6	hsa-miR-4697-5p	0.01552	0.05570	96.57	402.29
7	hsa-miR-4488	0.01567	0.05570	95.64	397.49
8	hsa-miR-1237-5p	0.01596	0.05570	93.83	388.19
9	hsa-miR-185-3p	0.01671	0.05570	89.58	366.54
10	hsa-miR-4766-5p	0.01923	0.05570	77.61	306.69

Table 4
Reactome Pathways 2024

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Metalloprotease DUBs	0.004643	0.03187	332.78	1787.85
2	Nonhomologous End-Joining (NHEJ)	0.007631	0.03187	199.47	972.53
3	Recruitment and ATM-med Phosphorylation of Repair and Signaling Proteins at DNA Double Strand Breaks	0.008973	0.03187	168.97	796.42
4	DNA Double Strand Break Response	0.009122	0.03187	166.14	780.37
5	G2 M DNA Damage Checkpoint	0.01151	0.03187	131.06	585.16
6	Processing of DNA Double-Strand Break Ends	0.01195	0.03187	126.06	558.06
7	HDR Through Homologous Recombination (HRR) or Single Strand Annealing (SSA)	0.01730	0.03620	86.44	350.71
8	Homology Directed Repair	0.01819	0.03620	82.13	329.10
9	G2 M Checkpoints	0.02041	0.03620	73.02	284.17
10	DNA Double-Strand Break Repair	0.02263	0.03620	65.72	248.97

Table 5
KEGG 2021 Human

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Homologous recombination	0.006138	0.006138	249.46	1270.59

KEGG Pathway Analysis (Table 5): Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment in the homologous recombination repair (HRR) pathway, with an exceptionally high odds ratio of 249.46. This result is consistent with previous findings that HRR deficiency is a major contributor to ovarian cancer pathogenesis, particularly in cases with BRCA1/BRCA2 mutations.

Given that HRR is essential for error-free DNA repair, its impairment may lead to increased genomic instability and tumor progression. This finding further supports the therapeutic efficacy of PARP inhibitors which selectively target HR-deficient ovarian cancer cells.

Protein-Protein Interaction (PPI) Network Analysis (Table 6): PPI network analysis identified HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) and SUMO1 (small ubiquitin-like modifier 1) as hub proteins with significant interactions in ovarian cancer-related pathways. HGS is known to regulate receptor-mediated endocytosis and has been implicated in EGFR degradation, a key factor in ovarian cancer growth and resistance to targeted therapies. SUMO1, on the other hand, is involved in protein post-translational modifications including sumoylation of DNA repair proteins, which may impact the stability of tumor suppressors such as p53 and BRCA1.

The presence of these proteins as key regulators suggests that post-translational modifications and receptor signalling may play an important role in ovarian cancer pathophysiology.

Gene Ontology (GO) Analysis - Biological Process, Cellular Component and Molecular Function (Tables 7-

9): GO enrichment analysis classified ovarian cancer-associated genes into three main categories: biological process, cellular component and molecular function.

Biological Processes: The most significantly enriched term was double-strand break repair, with an extraordinarily high odds ratio of 238.93. This finding is consistent with the hypothesis that DNA repair defects are a hallmark of ovarian cancer. Other enriched terms included histone deubiquitination and mitotic checkpoint signalling, indicating that epigenetic regulation and cell cycle control are critical factors in tumor progression.

Cellular Component: The analysis identified the nucleus as the primary cellular location of ovarian cancer-associated genes, with genes significantly enriched in intracellular membrane-bound organelles. This suggests that nuclear processes, particularly chromatin remodelling and gene transcription regulation, play a major role in ovarian cancer pathogenesis.

Molecular Function: The most enriched molecular function was DNA nuclelease activity, followed by endonuclease and nucleic acid binding, suggesting that DNA cleavage and repair pathways are frequently altered in ovarian cancer cells. Additionally, PDZ domain binding was identified as a significant molecular interaction, indicating potential involvement of cell signalling proteins in tumor progression.

Cell Marker Analysis (Table 10): Cell marker analysis indicated a strong association between ovarian cancer genes and vascular endothelial cells, particularly in the liver and kidney. The enrichment of plasmacytoid dendritic cells suggests a potential role for the innate immune system in ovarian cancer progression. These findings suggest that

ovarian cancer cells may exploit immune system interactions and vascular remodelling to facilitate metastasis and tumor growth.

RNA-Seq Analysis: Gene Expression Signatures (Tables 11 and 12): RNA sequencing (RNA-seq) data identified several differentially expressed gene signatures in human and mouse models. Notably, Baf-Yields intra-complex lethaliies (GSE108388) and disruption of Grin2B impairs neurons (GSE114685) were among the most significantly downregulated signatures indicating potential loss of tumor suppressor gene function in ovarian cancer. These findings

further reinforce the role of chromatin remodelling and neuronal signalling pathways in ovarian cancer development.

Network Clustering and PPI Enrichment: Network clustering revealed three primary clusters involving ANKLE1, BABAM1 and USHBP1, further supporting their involvement in DNA repair and immune regulation. The PPI enrichment p-value (3.1e-06) indicates a statistically significant network interaction, suggesting that these genes function cooperatively in ovarian cancer pathogenesis.

Table 6
PPI Hub Proteins

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	HGS	0.01819	0.02941	82.13	329.10
2	SUMO1	0.02941	0.02941	50.25	177.22

Table 7
GO Biological Process 2023

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Double-Strand Break Repair (GO:0006302)	0.0002093	0.005022	238.93	2024.18
2	Histone H2A K63-linked Deubiquitination (GO:0070537)	0.001050	0.008712	1665.92	11427.00
3	DNA Damage Response (GO:0006974)	0.001089	0.008712	102.70	700.64
4	DNA Repair-Dependent Chromatin Remodeling (GO:0140861)	0.002398	0.01222	666.07	4018.42
5	Mitotic Cell Cycle Checkpoint Signaling (GO:0007093)	0.003745	0.01222	416.10	2324.86
6	Nucleic Acid Phosphodiester Bond Hydrolysis (GO:0090305)	0.003895	0.01222	399.44	2216.11
7	Negative Regulation Of G2/M Transition Of Mitotic Cell Cycle (GO:0010972)	0.004194	0.01222	369.81	2024.38
8	Mitotic G2 DNA Damage Checkpoint Signaling (GO:0007095)	0.004493	0.01222	344.28	1860.86
9	Protein K63-linked Deubiquitination (GO:0070536)	0.004942	0.01222	311.95	1656.47
10	Histone Deubiquitination (GO:0016578)	0.005092	0.01222	302.48	1597.17

Table 8
GO Cellular Component 2023

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Nucleus (GO:0005634)	0.1284	0.1662	6.92	14.20
2	Intracellular Membrane-Bounded Organelle (GO:0043231)	0.1662	0.1662	5.73	10.29

Table 9
GO Molecular Function 2023

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	DNA Nuclease Activity (GO:0004536)	0.002248	0.008994	713.68	4351.69
2	Endonuclease Activity (GO:0004519)	0.008675	0.009272	174.91	830.36
3	Nuclease Activity (GO:0004518)	0.008675	0.009272	174.91	830.36
4	PDZ Domain Binding (GO:0030165)	0.009272	0.009272	163.41	764.89

Table 10
CellMarker 2024

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Endothelial Cell Liver Mouse	0.004344	0.01738	356.59	1939.49
2	Plasmacytoid Dendritic Cell Spleen Mouse	0.02218	0.04058	67.06	255.38
3	Vascular Endothelial Cell Kidney Mouse	0.03044	0.04058	48.51	169.41
4	SLC16A7+ Cell Lung Human	0.1444	0.1444	9.38	18.15

Table 11
RNAseq Automatic GEO Signatures Human Down

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Baf Yields Intra-Complex Lethalities GSE108388 9	0.0004630	0.02084	159.27	1222.80
2	Disruption Grin2B Impairs Neurons GSE114685 2	0.0004630	0.02084	159.27	1222.80
3	Rat Lymphocytes 8-Tetrachlorodibenzo-P-Dioxin Tcdd GSE80953 1	0.03703	0.03703	39.65	130.70
4	Lymphoblastoid Ahr Ligand Treatments GSE116637 1	0.03703	0.03703	39.65	130.70
5	Determine Depletion Setdb1 Thp-1 GSE103409 1	0.03703	0.03703	39.65	130.70
6	Bidirectional Occurs Transposable Setdb1 GSE103410 1	0.03703	0.03703	39.65	130.70
7	Transcriptome Ski Knock-Out H160 GSE107555 1	0.03703	0.03703	39.65	130.70
8	Montelukast Counteracts Virus-Induced Multiplication GSE68673 3	0.03703	0.03703	39.65	130.70
9	Metabolomics Discloses Pivotal Arachidonic GSE103940 1	0.03703	0.03703	39.65	130.70
10	Transcriptome Keratinocytes Hpv16 Oncogene GSE124357 1	0.03703	0.03703	39.65	130.70

Table 12
RNAseq Automatic GEO Signatures Mouse Down

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	Profiles Crept Deleted Lgr5 GSE143604 1	0.0004630	0.03334	159.27	1222.80
2	Profiles Vil-Creptko Intestinal Cyrpts GSE143695 1	0.0004630	0.03334	159.27	1222.80
3	Tcf1 Lef1 Mature Thymocytes GSE73238 1	0.03703	0.03703	39.65	130.70
4	Zbtb46 Mediastinal Nodes Previously GSE144755 1	0.03703	0.03703	39.65	130.70
5	Preparation Protocol Performance Smarter GSE131396 1	0.03703	0.03703	39.65	130.70
6	Cell-Mediated Cytotoxicity Cytostatic Drug GSE110397 1	0.03703	0.03703	39.65	130.70
7	Pair-Feeding Lcmv Cl13 Infected GSE123684 1	0.03703	0.03703	39.65	130.70
8	Young C57Bl 6N Hsc GSE127522 1	0.03703	0.03703	39.65	130.70
9	Blood Precursor Activates Vcam1 GSE127758 1	0.03703	0.03703	39.65	130.70
10	Commensal Skin Fungi Psoriasisiform GSE144850 2	0.03703	0.03703	39.65	130.70

The relatively low number of nodes (3) and edges (2) in the network highlights the specificity of these interactions, making them promising candidates for targeted therapy development.

Discussion

The findings of this study provide a comprehensive genomic and functional perspective on ovarian cancer, integrating GWAS-identified risk loci, microRNA (miRNA) interactions, pathway enrichment, protein-protein interaction (PPI) networks and gene expression signatures. This multifaceted approach has highlighted critical

mechanisms underlying ovarian cancer susceptibility, progression and potential therapeutic targets.

Genetic Variants and Their Role in Ovarian Cancer: The GWAS analysis identified significant associations at chromosome 19p13.11, particularly involving ANKLE1, BABAM1 and USHBP1. The presence of ANKLE1, a gene encoding a DNA endonuclease involved in maintaining genomic integrity, supports previous evidence that DNA repair deficiencies are a hallmark of ovarian cancer. Defects in DNA damage response pathways have been well-documented in hereditary ovarian cancers, particularly in

patients with BRCA1/BRCA2 mutations. The strong association of BABAM1 with ovarian cancer further supports its role in homologous recombination repair (HRR), a key pathway frequently altered in ovarian tumors.

Furthermore, USHBP1, which is involved in cellular signalling pathways, suggests that immune system regulation may also play a role in tumor development. This aligns with recent studies highlighting the importance of the tumor microenvironment and immune modulation in ovarian cancer. The genomic findings in this study emphasize that ovarian cancer is not only driven by direct genetic alterations but also influenced by immune system interactions, providing new avenues for immunotherapy-based interventions.

MicroRNA Regulatory Networks and Post-Transcriptional Regulation: MicroRNA (miRNA) analysis provided further insights into the post-transcriptional regulatory landscape of ovarian cancer. Several miRNAs, such as hsa-miR-614, hsa-miR-652 and hsa-miR-1306, were identified as potential regulators of ovarian cancer-associated genes. These miRNAs are known to be involved in pathways related to epithelial-mesenchymal transition (EMT), apoptosis resistance and drug sensitivity. One of the most significant findings was the strong interaction between hsa-miR-185-3p and DNA repair genes, which has been previously implicated in chemoresistance in ovarian cancer. Given that chemoresistance remains one of the biggest challenges in ovarian cancer treatment, understanding miRNA-mediated regulation may pave the way for novel therapeutic strategies that restore drug sensitivity.

Pathway Analysis and DNA Repair Mechanisms in Tumorigenesis: Pathway analysis using Reactome and KEGG databases revealed enrichment in DNA repair mechanisms, particularly homologous recombination repair (HRR), non-homologous end-joining (NHEJ) and DNA double-strand break repair pathways. These findings underscore the importance of genomic stability in ovarian cancer and support the existing literature suggesting that defects in HRR lead to increased reliance on alternative repair mechanisms, such as NHEJ, which is more error-prone and may contribute to tumor progression.

The enrichment of the G2/M checkpoint pathway further supports the hypothesis that cell cycle dysregulation contributes to uncontrolled cell proliferation in ovarian cancer. Disruptions in checkpoint signalling allow cancer cells to bypass DNA damage-induced apoptosis, increasing genomic instability. This also strengthens the rationale for using PARP inhibitors, which selectively target HR-deficient ovarian cancer cells, exploiting synthetic lethality to induce tumor cell death.

Protein-Protein Interaction Networks and Key Regulatory Proteins: The PPI network analysis identified HGS and SUMO1 as central hub proteins involved in

ovarian cancer pathogenesis. HGS (Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate) plays a key role in EGFR degradation, an essential process regulating cancer cell survival, proliferation and drug resistance. Overexpression of HGS has been linked to poor prognosis in ovarian cancer, making it a potential target for therapeutic intervention.

SUMO1, a protein involved in sumoylation and DNA repair, was also found to be significantly enriched. Sumoylation is known to regulate key tumor suppressors such as p53 and BRCA1, indicating that alterations in this pathway may contribute to defective DNA repair responses in ovarian cancer cells. Given the emerging role of post-translational modifications in cancer progression, targeting SUMO1-mediated regulatory mechanisms may offer novel therapeutic strategies.

Cellular and Immune System Interactions in Ovarian Cancer: Cell marker analysis provided evidence that ovarian cancer-associated genes are enriched in vascular endothelial cells, particularly in the liver and kidney, suggesting that angiogenesis and vascular remodelling play critical roles in ovarian tumor progression. The strong association with plasmacytoid dendritic cells also indicates potential immune system involvement, supporting the hypothesis that ovarian cancer may exploit immune evasion mechanisms to sustain tumor growth. These findings reinforce the growing body of evidence suggesting that immune checkpoint inhibitors and anti-angiogenic therapies may be beneficial in ovarian cancer treatment. Combining DNA repair inhibitors (such as PARP inhibitors) with immunotherapies may provide a synergistic therapeutic approach, targeting both the genomic and immune landscape of the disease.

RNA-Seq Analysis and Tumor Biology: RNA-seq data further validated the role of chromatin remodelling and neuronal signalling in ovarian cancer. Differential gene expression analysis highlighted the downregulation of genes involved in chromatin organization and DNA accessibility, supporting the notion that epigenetic dysregulation contributes to ovarian cancer pathogenesis. These results are in line with previous studies indicating that chromatin-modifying enzymes, such as histone deacetylases (HDACs), play a crucial role in tumorigenesis, making them potential therapeutic targets. Furthermore, the identification of neuronal signalling pathways suggests that ovarian cancer cells may hijack developmental pathways to support metastasis and invasion. Targeting these signaling pathways may help to disrupt tumor progression and to reduce metastatic potential.

Network Clustering and Functional Genomic Insights: The network clustering analysis revealed that ANKLE1, BABAM1 and USHBP1 form a highly interconnected module, indicating that these genes work cooperatively in DNA repair and immune modulation. Given the PPI

enrichment p-value of 3.1e-06, the significant clustering of these genes supports the hypothesis that disruptions in these pathways contribute to ovarian cancer pathogenesis.

Pathway enrichment analyses have provided additional insights into the biological processes implicated in ovarian cancer. Reactome and KEGG pathway analyses have identified DNA repair mechanisms, particularly homologous recombination and non-homologous end-joining (NHEJ), as critical pathways associated with ovarian cancer risk loci.¹⁹ Deficiencies in these repair pathways lead to accumulation of DNA damage, increasing the likelihood of malignant transformation.¹⁷ Additionally, immune system modulation has been identified as a significant factor in ovarian cancer pathogenesis, with genetic variants influencing immune cell infiltration and cytokine signaling.²

Protein-protein interaction (PPI) network analyses have identified key regulatory proteins that may serve as therapeutic targets in ovarian cancer. Notably, SUMO1 and HGS have emerged as hub proteins in PPI networks, suggesting their involvement in cellular stress response and protein stability regulation.¹² These findings underscore the importance of studying molecular interactions to uncover potential vulnerabilities in ovarian cancer cells.⁵

The integration of GWAS data with functional bioinformatics analyses has paved the way for precision oncology approaches in ovarian cancer. By identifying genetic risk factors and their functional consequences, researchers can develop targeted therapies that exploit specific molecular pathways altered in ovarian cancer.¹⁴ Poly (ADP-ribose) polymerase (PARP) inhibitors, for example, have shown remarkable efficacy in BRCA-mutant ovarian cancers by targeting defective DNA repair mechanisms. The expanding landscape of GWAS-driven discoveries holds promise for developing novel therapeutic strategies aimed at improving patient outcomes.

The results suggest that ovarian cancer may arise from an intricate interplay of genetic mutations, immune evasion and DNA repair deficiencies, highlighting the multifaceted nature of tumor progression. Future studies should focus on functional validation of these genetic interactions to determine their precise role in disease etiology and therapeutic response.

Conclusion

- GWAS analysis identified ANKLE1, BABAM1 and USHBP1 as major ovarian cancer risk loci.
- miRNA analysis revealed key regulatory elements such as hsa-miR-614 and hsa-miR-652, suggesting post-transcriptional modifications.
- Pathway enrichment underscored the significance of DNA repair pathways, NHEJ and HRR, with strong implications for targeted therapy.
- PPI network analysis identified HGS and SUMO1 as central regulatory proteins.

- Cell marker analysis pointed to a role for immune system modulation in ovarian cancer progression.
- RNA-seq analysis revealed differential gene expression patterns supporting chromatin remodelling defects.

References

1. Antoniou A., A locus on 19p13 locus modifies risk of breast cancer for BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population, *Nature Genetics*, doi: 10.1038/ng.669 (2010)
2. Azzato E.M. et al, Prevalent cases in observational studies of cancer survival: do they bias hazard ratio estimates?, *Br. J. Cancer*, **100**, 1806–1811, doi: 10.1038/sj.bjc.6605062 (2009)
3. Bolton K.L. et al, Common variants at 19p13 are associated with susceptibility to ovarian cancer, *Nat Genet*, **42**(10), 880–4, doi: 10.1038/ng.666 (2010)
4. Boyd J., Clinicopathologic features of BRCA-linked and sporadic ovarian cancer, *JAMA*, **283**, 2260–2265, doi: 10.1001/jama.283.17.2260 (2000)
5. Dafou D. et al, Chromosomes 6 and 18 induce neoplastic suppression in epithelial ovarian cancer cells, *Int. J. Cancer*, **124**, 1037–1044, doi: 10.1002/ijc.24058 (2009)
6. Ferlay J., Bray F., Pisani P. and Parkin D.M., GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide, Lyon, IARC Press (2004)
7. Feng L., Huang J. and Chen J., MERIT40 facilitates BRCA1 localization and DNA damage repair, *Genes Dev.*, **23**, 719–728, doi: 10.1101/gad.1770609 (2009)
8. Galindo B.E. and Vacquier V.D., Phylogeny of the TMEM16 protein family: some members are overexpressed in cancer, *Int. J. Mol. Med.*, **16**, 919–924 (2005)
9. Goode E. et al, A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24, *Nat Genet*, **42**, 874–879 (2010)
10. Gupta Dheeraj Rajesh, Murugeshwari Vidya, Kumar Pankaj and Kumar Abhishek, Design and in silico evaluation of oxadiazole linked chromone derivatives as anti-depressant agents, *Res. J. Chem. Environ.*, **28**(1), 73-79 (2024)
11. Hindorff L.A., Sethupathy P., Junkins H.A., Ramos E.M., Mehta J.P., Collins F.S. and Manolio T.A., Potential etiologic and functional implications of genome-wide association loci for human diseases and traits, *Proc Natl Acad Sci USA*, **106**(23), 9362-7, doi: 10.1073/pnas.0903103106 (2009)
12. Krzywinski M. et al, A set of BAC clones spanning the human genome, *Nucleic Acids Res.*, **32**, 3651–3660, doi: 10.1093/nar/gkh700 (2004)
13. Lakhani S.R. et al, Pathology of ovarian cancers in BRCA1 and BRCA2 carriers, *Clin Cancer Res.*, **10**, 2473–2481, doi: 10.1158/1078-0432.ccr-1029-3 (2004)
14. Li N.F. et al, A modified medium that significantly improves the growth of human normal ovarian surface epithelial (OSE) cells

in vitro, Lab Invest., **84**, 923–931, doi: 10.1038/labinvest.3700093 (2004)

15. Maia A.T. et al, Extent of differential allelic expression of candidate breast cancer genes is similar in blood and breast, *Breast Cancer Res.*, **11**, R88, doi: 10.1186/bcr2458 (2009)

16. Majdak E.J. et al, Prognostic impact of BRCA1 pathogenic and BRCA1/BRCA2 unclassified variant mutations in patients with ovarian carcinoma, *Cancer*, **104**, 1004–1012, doi: 10.1002/cncr.21276 (2005)

17. Marchini J., Howie B., Myers S., McVean G. and Donnelly P., A new multipoint method for genome-wide association studies by imputation of genotypes, *Nat. Genet.*, **39**, 906–913, doi: 10.1038/ng2088 (2007)

18. Sankararaman S., Sridhar S., Kimmel G. and Halperin E., Estimating local ancestry in admixed populations, *Am. J. Hum. Genet.*, **82**, 290–303, doi: 10.1016/j.ajhg.2007.09.022 (2008)

19. Scheet P. and Stephens M., A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase, *Am. J. Hum. Genet.*, **78**, 629–644, doi: 10.1086/502802 (2006)

20. Shao G. et al, MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks, *Genes Dev.*, **23**, 740–754, doi: 10.1101/gad.1739609 (2009)

21. Song H. et al, A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2, *Nat. Genet.*, **41**, 996–1000, doi: 10.1038/ng.424 (2009)

22. Tavassoli F.A. and Devilee P., World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Breast and Female Genital Organs, Lyon, IARC Press (2003)

23. Tomlinson I. et al, A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21, *Nat. Genet.*, **39**, 984–988, doi: 10.1038/ng2085 (2007)

24. Wang B., Hurov K., Hofmann K. and Elledge S.J., NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control, *Genes Dev.*, **23**, 729–739, doi: 10.1101/gad.1770309 (2009)

25. Yang C., Yu B., Zhou D. and Chen S., Regulation of aromatase promoter activity in human breast tissue by nuclear receptors, *Oncogene*, **21**, 2854–2863, doi: 10.1038/sj.onc.1205386 (2002).

(Received 10th April 2025, accepted 05th June 2025)